On modular symbols and the cohomology of Hecke triangle surfaces
نویسنده
چکیده
The aim of this article is to give a concise algebraic treatment of the modular symbols formalism, generalised from modular curves to Hecke triangle surfaces. A sketch is included of how the modular symbols formalism gives rise to the standard algorithms for the computation of holomorphic modular forms. Precise and explicit connections are established to the cohomology of Hecke triangle surfaces and group cohomology. In all the note a general commutative ring is used as coefficient ring in view of applications to the computation of modular forms over rings different from the complex numbers. MSC Classification: 11F67 (primary), 11F75, 11Y40, 20H10 (secondary).
منابع مشابه
Computing systems of Hecke eigenvalues associated to Hilbert modular forms
We utilize effective algorithms for computing in the cohomology of a Shimura curve together with the Jacquet-Langlands correspondence to compute systems of Hecke eigenvalues associated to Hilbert modular forms over a totally real field F . The design of algorithms for the enumeration of automorphic forms has emerged as a major theme in computational arithmetic geometry. Extensive computations h...
متن کاملModular Symbols and Hecke Operators
We survey techniques to compute the action of the Hecke operators on the cohomology of arithmetic groups. These techniques can be seen as generalizations in different directions of the classical modular symbol algorithm, due to Manin and Ash-Rudolph. Most of the work is contained in papers of the author and the author with Mark McConnell. Some results are unpublished work of Mark McConnell and ...
متن کاملAUTOMORPHIC SYMBOLS, p-ADIC L-FUNCTIONS AND ORDINARY COHOMOLOGY OF HILBERT MODULAR VARIETIES
We introduce the notion of automorphic symbol generalizing the classical modular symbol and use it to attach very general p-adic L-functions to nearly ordinary Hilbert automorphic forms. Then we establish an exact control theorem for the p-adically completed cohomology of a Hilbert modular variety localized at a suitable nearly ordinary maximal ideal of the Hecke algebra. We also show its freen...
متن کاملOperations and Cooperations in Elliptic Cohomology, Part I: Generalized modular forms and the cooperation algebra
This is the first of two interconnected parts: Part I contains the geometric theory of generalized modular forms and their connections with the cooperation algebra for elliptic cohomology, E``∗E``, while Part II is devoted to the more algebraic theory associated with Hecke algebras and stable operations in elliptic cohomology. We investigate the structure of the stable operation algebra E``∗E``...
متن کاملDigital cohomology groups of certain minimal surfaces
In this study, we compute simplicial cohomology groups with different coefficients of a connected sum of certain minimal simple surfaces by using the universal coefficient theorem for cohomology groups. The method used in this paper is a different way to compute digital cohomology groups of minimal simple surfaces. We also prove some theorems related to degree properties of a map on digital sph...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005